

A Theoretical Framework for Gastric Electrophysiology: Re-framing the Gut-Brain Axis and the Gastric Slow Wave as an Analogue Gravity System

Nicholas P. Timms

Submitted: December 2025 : Published: 15th February, 2026

Abstract

The Gut-Brain Axis (GBA) is a complex, bidirectional communication network intrinsically linking the enteric and central nervous systems. Within this network, the brain and vagus nerve modulate essential gut functions, including the gastric slow wave—a basal 0.05 Hz electrical rhythm generated by pacemaker cells that dictates peristaltic contractions. Relying on existing mathematical models that describe the slow wave using a 1-D wave equation, this paper proposes reframing the stomach as a biological analogue gravity system. In this model, the stomach wall functions as an "effective spacetime metric," while the 0.05 Hz slow wave "Gaussian pulses" behave as massless scalar fields propagating through the medium. The GBA serves as the central controller of this effective spacetime. Through vagal modulation, the brain "tunes" the physical properties of the metric, dictating the location-dependent wave speed across the gastric system. This framework allows gastrointestinal motility disorders, such as gastroparesis, to be understood as pathologies of the effective spacetime metric. Specifically, conduction blocks—regions where the propagation speed pathologically drops to function as "analogue event horizons" that trap the gastric pulse and result in a measurable breakdown of motility.

1. The Gut-Brain Axis: A Bidirectional Control System

The Gut-Brain Axis (GBA) is understood as a complex, bidirectional communication network that intrinsically links the enteric and central nervous systems.¹ This network is not merely structural; it incorporates a web of endocrine, humoral, metabolic, and immune pathways.¹ This system facilitates a constant, two-way flow of information: the brain, via the autonomic nervous system (ANS) and the vagus nerve, modulates gut functions like motility and secretion ³, while the gut and its resident microbiome send signals back to the brain,

influencing everything from mood to inflammation.⁵

This modern framework establishes the GBA as a dynamic, non-linear system with multiple feedback loops.² In this context, the brain acts as a central control, and the vagus nerve is a primary mediator, capable of "tuning" the physical properties and behavior of the gastrointestinal tract.

2. The Gastric Slow Wave as a 1D Wave Equation (Allegra et al.)

To understand the physical system that the GBA controls, we can turn to the mathematical model of gastric electrophysiology presented in the Allegra et al. (2019) paper.⁶

The paper's objective was to non-invasively measure the "gastric slow wave," the electrical rhythm generated by pacemaker cells (Interstitial Cells of Cajal) that governs the stomach's peristaltic contractions. This slow wave is the true "pulse" of the stomach, a basal rhythm known to operate at approximately 0.05 Hz (about one cycle every 20 seconds).⁶

To model this phenomenon, the researchers employed a 1-D wave equation. This mathematical construct, used as the "ground truth" for their simulations, is defined as:

$$\frac{\partial^2 u}{\partial t^2} = c(x)^2 \frac{\partial^2 u}{\partial x^2}$$

In this model⁶:

- $u(x, t)$ represents the amplitude of the wave at a specific location x and time t . "Gaussian pulses" are the specific inputs to this equation—the "perturbations" that simulate the 0.05 Hz firing of the pacemaker cells. These pulses are the "particles" of information (the slow waves) that must propagate.
- $c(x)$ is the critical variable, defined as the "stomach surface location dependent wave speed."

This is not a constant. The Allegra et al. model explicitly defines $c(x)$ as being variable, changing depending on the region of the stomach. Their "normative" simulation used physiological data to set this speed⁶:

- **Proximal Region 1:** $c(x) = 6.0 \text{ mm/s}$
- **Proximal 2 / Distal 1:** $c(x) = 3.0 \text{ mm/s}$
- **Distal Region 2:** $c(x) = 5.9 \text{ mm/s}$

Thus, the Allegra et al. paper mathematically defines the stomach not as a simple conductor,

but as a stationary medium through which a "Gaussian pulse" (the slow wave) propagates at a variable, location-dependent speed $c(x)$.

3. Analogue Gravity and Effective Spacetime Metrics

This specific mathematical structure—a wave equation in a medium with a variable propagation speed—is the foundational concept of a field of physics known as "analogue gravity".

First proposed by Bill Unruh in 1981, this theory states that the equations governing perturbations (like sound waves) in a moving fluid are mathematically identical to those governing fields (like light) in a curved spacetime. This analogy allows physicists to create "analogue black holes" in laboratory settings, such as in fluids or Bose-Einstein condensates.

The key components of these models are:

1. **An Effective Metric:** The perturbations (sound waves, phonons) do not "know" they are in a fluid. They behave as if they are massless scalar fields propagating on an "emergent acoustic metric". This "effective spacetime" is defined by the properties of the medium, such as the fluid velocity $v(x)$ and the local speed of sound $c(x)$.
2. **A Variable Wave Speed:** The wave equation for a massless scalar field in a medium with variable wave speed $c(x)$ is a known model for analogue gravity. The variable speed itself "curves" the effective spacetime.
3. **An Analogue Event Horizon:** An "acoustic horizon" (the analogue of a black hole's event horizon) is formed at the point where the medium's flow speed v becomes greater than the local wave speed c . At this "transonic" point, the sound wave is "dragged" by the flow faster than it can move, and it can no longer escape—precisely analogous to light at a black hole's event horizon.

4. Reframing Gastric Electrophysiology as an Analogue Gravity System

By synthesizing these concepts, we can propose a novel theoretical framework: the human stomach, as modeled by Allegra et al., is a biological analogue gravity system.

The mathematical parallel is exact.

Analogue Gravity Model	Gastric Model (Allegra et al.)
------------------------	--------------------------------

Effective Spacetime Metric	The stomach wall (gastric medium)
Perturbation / Massless Field	The "Gaussian pulse" (0.05 Hz slow wave)
Local Wave Speed ("Speed of Light")	$c(x)$, the location-dependent wave speed <small>6</small>
Controller of the Metric	The Gut-Brain Axis (GBA)

In this framework, the GBA acts as the "controller" of the effective spacetime. The brain, through the vagus nerve, can "tune" the local properties of the metric. Research has shown that vagus nerve stimulation directly alters the gastric slow wave, modulating its frequency, propagation, and velocity. Therefore, the GBA determines the function $c(x)$ for the entire system.

This reframing provides a powerful new model for gastrointestinal disorders, which can be understood as pathologies of the effective spacetime metric.

Consider gastroparesis, a motility disorder associated with GBA dysfunction (e.g., vagus nerve damage). High-resolution mapping in gastroparesis patients reveals "abnormal initiation" and "abnormal conduction" of the slow wave, including "reduced velocities" and "conduction blocks".

A "conduction block" is a point in the stomach where the slow wave cannot pass. In our analogue gravity model, this is a region where the local propagation speed $c(x)$ has been pathologically reduced to zero.

This "conduction block" is a *de facto* analogue event horizon.

A healthy "Gaussian pulse" (slow wave) propagating toward this region would slow down as $c(x)$ decreases, finally "freezing" at the point where $c(x) = 0$, unable to propagate any further. The pulse is "trapped" by the pathological "curvature" of the gastric medium.

This model can also explain other "gastric dysrhythmias". For example, some studies of gastroparesis patients show a complete reversal of wave direction, with a retrograde (backward) propagation velocity of **-4.3 mm/s** compared to the normal anterograde (forward) velocity of **+7.4 mm/s** in healthy controls. In this analogue model, this represents

a "spacetime" so pathologically altered by the disease that it reverses the path of the wave.

5. Conclusion

The model presented by Allegra et al. (2019)⁶, while designed as a diagnostic tool, provides the precise mathematical basis for reframing gastric electrophysiology as a system of analogue gravity. The stomach wall acts as an "effective metric" whose properties, defined by the variable wave speed $c(x)$, are "tuned" by the bidirectional Gut-Brain Axis. The 0.05 Hz "Gaussian pulses" (the gastric slow waves) are perturbations that travel through this effective spacetime.

This framework offers a new theoretical lens through which to view gastrointestinal disorders. Pathologies like gastroparesis can be understood not just as biological failures, but as physical phenomena—the creation of "pathological metrics" and "analogue event horizons" (conduction blocks) that "trap" the gastric pulse, leading to a measurable breakdown in motility.

Works cited

1. The Gut-Brain Axis: Influence of Microbiota on Mood and Mental Health - PubMed Central, accessed November 14, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC6469458/>
2. The Gut-Brain Axis - PubMed - NIH, accessed November 14, 2025, <https://pubmed.ncbi.nlm.nih.gov/34669431/>
3. The Gut-Brain Axis: Exploring the Bidirectional Communication Between the Gut Microbiome and the Brain - Journal of Forensic Science and Research, accessed November 14, 2025, <https://www.forensicscijournal.com/journals/jfsr/jfsr-aid1064.php>
4. The Bidirectional Signal Communication of Microbiota-Gut-Brain Axis in Hypertension - PMC, accessed November 14, 2025, <https://pmc.ncbi.nlm.nih.gov/articles/PMC8714396/>
5. The Gut-Brain Axis - Annual Reviews, accessed November 14, 2025, <https://www.annualreviews.org/content/journals/10.1146/annurev-med-042320-014032>
6. Bayesian inverse methods for spatiotemporal characterization of gastric electrical activity from cutaneous multi-electrode recordings, <https://doi.org/10.1371/journal.pone.0264032> | PLOS One